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      Abstract 

 

Deep learning grows have led to impressive findings from a text to speech domain. A 

neural network with deep neural networks is typically a compilation of countless hours 

of expertly recorded discourse from a single speaker had been employed to train the 

entire system.. Recent research introduced a three-stage process to replicating voice 

training from only a few seconds of input without restructuring the character's 

language. We adapt the framework with a newer vocoder model to make it run in real-

time. Audio synthesis is growing as a technological study hotspot. Human-computer 

interaction will keep evolving so that computers can interact with humans. Voice will 

be a great deal stating to connection among machines and human beings’ technique in 

the subsequent years considering it has numerous benefits rather than a single process. 

Voice replication is a branch for voice technology that can replicate a specific person's 

voice. Also, to avoid the robotic generated voice, which is common on numerous 

gadgets but is not always interactive with humans. A method over completing voice 

communication in real time replication with only a few samples is proposed to solve 

the issue of offering a substantial amount of specimens and a long delay over 

conversation replication in prior years. We available an artificial neural text to speech 

over the network formation system the fact that will produce audio expression in the 

sounds belonging to various speakers, which include those that went unnoticed through 

training. 
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1. INTRODUCTION 

 

1.1 Preface- 

Deep learning models have become predominant in many fields of applied machine learning. 

Text-to-speech (TTS), the process of synthesizing artificial speech from a text prompt, is no 

exception. Deep models that would produce more natural-sounding speech than the traditional 

concatenative approaches begun appearing in 2016. Much of the research focus has been 

since gathered around making these deep models more efficient, sound more natural, or 

training them in an end-to-end fashion. Inference has come from being hundreds of times 

slower than real-time on GPU to possible in real-time on a mobile CPU. As for the quality of 

the generated speech, Shen et al. demonstrate near-human naturalness. Interestingly, speech 

naturalness is best rated with subjective metrics; and comparison with actual human speech 

leads to the conclusion that there might be such a thing as” speech more natural than human 

speech”.  

Datasets of professionally recorded speech are a scarce resource. Synthesizing a natural voice 

with a correct pronunciation, lively intonation and a minimum of background noise requires 

training data with the same qualities. Furthermore, data efficiency remains a core issue of 

deep learning. Training a common text-to-speech model such as Tacotron typically requires 

hundreds of hours of speech. Yet the ability to generate speech with any voice is attractive for 

a range of applications, be they useful or merely a matter of customization. Research has led 

to frameworks for voice conversion and voice cloning. They differ in that voice conversion is 

a form of style transfer on a speech segment from a voice to another, whereas voice cloning 

consists in capturing the voice of a speaker to perform text-tospeech on arbitrary inputs. 

While the complete training of a single-speaker TTS model is technically a form of voice 

cloning, the interest rather lies in creating a fixed model able to incorporate newer voices with 

little data. The common approach is to condition a TTS model trained to generalize to new 

speakers on an embedding of the voice to clone. The embedding is low-dimensional and 

derived by a speaker encoder model that takes reference speech as input. This approach is 

typically more data efficient than training a separate TTS model for each speaker, in addition 

to being orders of magnitude faster and less computationally expensive. Interestingly, there is 

a large discrepancy between the duration of reference speech needed to clone a voice among 

the different methods, ranging from half an hour per speaker to only a few seconds. This 

factor is usually determining of the similarity of the generated voice with respect to the true 

voice of the speaker. 
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Our objective is to achieve a powerful form of voice cloning. The resulting framework must 

be able to operate in a zero-shot setting, that is, for speaker’s unseen during training. It should 

incorporate a speaker’s voice with only a few seconds of reference speech. These desired 

results are shown to be fulfilled. Their results are impressive, but not backed by any public 

implementation. We reproduce their framework and make our implementation open-source. 

In addition, we integrate a model based on the framework to make it run in real-time, i.e., to 

generate speech in a time shorter or equal to the duration of the produced speech. 

The structure of this document goes as follows. We begin with a short introduction on 

methods of TTS with machine learning. Follows a review of the evolution of the state of the 

art for TTS with speech naturalness as the core metric. We conclude with a presentation of a 

toolbox we designed to interface the framework. 

 

1.2 Overview- 

In the making of replication toolbox, we used SV2TTS (Speaker Verification to Text-to-

Speech) framework, which is a real-time voice cloning system. The framework is based on 

previous works by Google, including the GE2E loss, Tacotron, and WaveNet models. 

SV2TTS is a three-stage pipeline that consists of a speaker encoder, a synthesizer, and a 

vocoder. 

1.2.1 Speaker Encoder- 

                         The first stage of the framework involves a speaker encoder, which takes a 

short utterance from a single speaker and derives an embedding—a meaningful representation 

of the speaker's voice. This embedding is designed to place similar voices closer together in a 

latent space. 

To avoid segments that are mostly silent when sampling partial utterances from 

complete utterances, we use the webrtcvad python package to perform Voice Activity 

Detection (VAD). This yields a binary flag over the audio corresponding to whether 

or not the segment is voiced. We perform a moving average on this binary flag to 

smooth out short spikes in the detection, which we then binarize again[1]. Finally, we 

perform a dilation on the flag with a kernel size of s + 1, where s is the maximum 

silence duration tolerated. The audio is then trimmed of the unvoiced parts. We found 

the value s = 0.2s to be a good choice that retains a natural speech prosody. This 

process is illustrated in Figure 1.2.1.1. A last preprocessing step applied to the audio 

waveforms is normalization, to make up for the varying volume of the speakers in the 

dataset. 

 



Dept. of CSE, SSGMCE, Shegaon, Session 2022-23 
3 

Replication of Voice Using Deep Learning 

  

 
 

 

Figure 1.2.1.1: The steps to silence removal with VAD, from top to bottom. The 

orange line is the binary voice flag where the upper value means that the segment is 

voiced, and unvoiced when lower. 

 

The combined several noisy datasets to make for a large corpus of speech of quality 

similar to what is found in the wild. These datasets are LibriSpeech, VoxCeleb1, 

VoxCeleb2 and an internal dataset, to which we do not have access. LibriSpeech is a 

corpus of audiobooks making up for 1000 hours of audio from 2400 speakers, split 

equally in two sets “clean” and “other”. The clean set is supposedly made up of 

cleaner speech than the other set, even though some parts of the clean set still contain 

a lot of noise. VoxCeleb1 and VoxCeleb2 are made up from audio segments extracted 

from you tube videos of celebrities. VoxCeleb1 has 1.2k speakers, while VoxCeleb2 

has about 6k. Both these datasets have non-English speakers. We used heuristics 

based on the nationality of the speaker to filter non-English ones out of the training 

set in VoxCeleb1, but couldn’t apply those same heuristics to VoxCeleb2 as the 

nationality is not referenced in that set. Note that it is unclear without experimentation 

as to whether having non-English speakers hurts the training of the encoder (the 

authors make no note of it either). All these datasets are sampled at 16kHz. 

The authors test different combinations of these datasets and observe the effect on the 

quality of the embeddings. They adjust the output size of LSTM model (the size of the 

embeddings) to 64 or 256 according to the number of speakers. They evaluate the 

subjective naturalness and similarity with ground truth of the speech generated by a 

synthesizer trained from the embeddings produced by each model. They also report 

the equal error rate of the encoder on speaker verification. 
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These results indicate that the number of speakers is strongly correlated with the good 

performance of not only the encoder on the verification task, but also of the entire 

framework on the quality of the speech generated and, on its ability, to clone a voice. 

The small jump in naturalness, similarity and EER gained by including VoxCeleb2 

could possibly indicate that the variation of languages is hurting the training. The 

internal dataset of the authors is a proprietary voice search corpus from 18k English 

speakers. The encoder trained on this dataset performs significantly better, however 

we only have access to public datasets. We thus proceed with LibriSpeech-Other, 

VoxCeleb1 and VoxCeleb2. 

We train the speaker encoder for one million steps. To monitor the training, we report 

the EER and we observe the ability of the model to cluster speakers. We periodically 

sample a batch of 10 speakers with 10 utterances each, compute the utterance 

embeddings and projecting them in a two-dimensional space with UMAP. As 

embeddings of different speakers are expected to be further apart in the latent space 

than embeddings from the same speakers, it is expected that clusters of utterances 

from a same speaker form as the training progresses. We report our UMAP 

projections in Figure 1.2, where this behaviour can be observed. 

As mentioned before, the authors have trained their model for 50 million steps on 

their proprietary dataset. While both our dataset and our model are smaller, our model 

still hasn’t converged at 1 million steps. The loss decreases steadily with little 

variance and could still decrease more, but we are bound by time [1]. 

The resulting model yields very strong results nonetheless. In fact, we computed the 

test set EER to be 4.5%. This is an astonishingly low value in light of the 10.14% of 

the authors for the same set with 50 times more steps. We do not know whether our 

model is actually performing that well or if the EER computation procedure of the 

authors is different enough than ours to produce values so far apart. 
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Figure 1.2.1.2: UMAP projections of utterance embeddings from randomly selected 

batches from the train set at different iterations of our model. 

 

1.2.2 Synthesizer- 

The second stage is the synthesizer, which generates a spectrogram from text, 

conditioned on the speaker's embedding. The synthesizer used in SV2TTS is Tacotron 

2, which is a popular model known for its text-to-speech synthesis capabilities. In this 

stage, WaveNet, a deep generative model, is not utilized. 

In SV2TTS, the authors consider two datasets for training both the synthesizer and the 

vocoder. These are LibriSpeech-Clean which we have mentioned earlier and VCTK 

which is a corpus of only 109 native English speakers recorded with professional 

equipment. The speech in VCTK is sampled at 48kHz and down sampled to 24kHz in 

their experiments, which is still higher than the 16kHz sampling of LibriSpeech. They 

find that a synthesizer trained on LibriSpeech generalizes better than on VCTK when 

it comes to similarity, but at the cost of speech naturalness. They assess this by 

training the synthesizer on one set, and testing it on the other[1]. We decided to work 

with the dataset that would offer the best voice cloning similarity on unseen speakers, 

and therefore picked LibriSpeech. We have also tried using the newer LibriTTS 

dataset created by the Tacotron team. This dataset is a cleaner version of the whole 

LibriSpeech corpus with noisy speakers pruned out, a higher sampling rate of 24kHz 

and the punctuation that LibriSpeech lacks. 
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Following the preprocessing recommendations, we use an Automatic Speech 

Recognition (ASR) model to force-align the LibriSpeech transcripts to text. We found 

the Montreal Forced Aligner1 to perform well on this task. We’ve also made a cleaner 

version of these alignments public2 to save some time for other users in need of them. 

With the audio aligned to the text, we split utterances on silences longer than 0.4 

seconds. This helps the synthesizer to converge, both because of the removal of 

silences in the target spectrogram, but also due to the reduction of the median duration 

of the utterances in the dataset, as shorter sequences offer less room for timing errors. 

We ensure that utterances are not shorter than 1.6 seconds, the duration of partial 

utterances used for training the encoder, and no longer than 11.25 seconds so as to 

save GPU memory for training. We do not split on a silence that would create an 

utterance too short or too long if possible. The distribution of the length of the 

utterances in the dataset is plotted in Figure 1.2.2.1. Note how long silences already 

account for 64 hours (13.7%) of the dataset. 

 

 

 

 

 

 

 

 

 

Figure 1.2.2.1: (left) Histogram of the duration of the utterances in LibriSpeech-

Clean, (middle) after splitting on silences, (right) after constraining the length and 

readjusting the splits. 

 

Isolating the silences with force-aligning the text to the utterances additionally allows 

to create a profile of the noise for all utterances of the same speaker. We use a python 

implementation of the LogMMSE algorithm. LogMMSE cleans an audio speech 

segment by profiling the noise in the earliest few frames (which will usually not 

contain speech yet) and updating this noise profile on non-speech frames continuously 
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throughout the utterance. We adapt this implementation to profile the noise and to 

clean the speech in two separate steps. On par with the authors, we found this 

additional preprocessing step to greatly help reduce the background noise of the 

synthesized spectrograms. 

It is difficult to provide any quantitative assessment of the performance of the model. 

We can observe that the model is producing correct outputs through informal listening 

tests, but a formal evaluation would require us to setup subjective score polls to derive 

the MOS. While some authors we referred to could do so, this is beyond our reach. In 

the case of the synthesizer however, one can also verify that the alignments generated 

by the attention module are correct. We plot an example in Figure 1.2.2.2. Notice the 

number of decoder steps matching the number of frames predicted by the number of 

decoder outputs per step [1]. Notice also how the predicted spectrogram is smoother 

than the ground truth, a typical behavior of the model predicting the mean in presence 

of noise. 

 

 

 

 

 

 

 

 

 

Figure 1.2.2.2: (left) Example of alignment between the encoder steps and the decoder 

steps. (right) Comparison between the GTA predicted spectrogram and the ground 

truth spectrogram. 

 

Before training the vocoder, we can evaluate some aspects of the trained synthesizer 

using Griffin-Lim as vocoder. Griffin-Lim is not a machine learning model but rather 

an iterative algorithm that estimates the source audio signal of a spectrogram. Audio 

generated this way typically conserves few of the voice characteristics of the speaker, 

but the speech is intelligible. The speech generated by the synthesizer matches 

correctly the text, even in the presence of complex or fictitious words. The prosody is 

however sometimes unnatural, with pauses at unexpected locations in the sentence, or 
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the lack of pauses where they are expected. This is particularly noticeable with the 

embedding of some speakers who talk slowly, showing that the speaker encoder does 

capture some form of prosody. The lack of punctuation in LibriSpeech is partially 

responsible for this, forcing the model to infer punctuation from the text alone. This 

issue was highlighted by the authors as well, and can be heard on some of their 

samples3 of LibriSpeech speakers. The limits we imposed on the duration of 

utterances in the dataset are likely also problematic. Sentences that are too short will 

be stretched out with long pauses, and for those that are too long the voice will be 

rushed. When generating several sentences at inference time, we need to manually 

insert breaks to delimit where to split the input text so as to synthesize the 

spectrogram in multiple parts. This has the advantage of creating a batch of inputs 

rather than a long input, allowing for fast inference. 

 

We can further observe how some voice features are lost with Griffin-Lim by 

computing the embeddings of synthesized speech and projecting them with UMAP 

along with ground truth embeddings. An example is given in Figure 1.2.2.3. We 

observe that the synthesized embeddings clusters are close to their respective ground 

truth embeddings cluster. The loss of emerging features is also visible, e.g for the 

pink, red and the two blue speakers the synthesized utterances have a lower inter-

cluster variance than their ground truth counterpart. This phenomenon occurs with the 

gray and purple speakers as well. 

 

Tacotron usually operates faster than real-time. We measure an inference speed of 5× 

to 10× real-time, by comparing the time of generation with the duration of the 

generated spectrogram. 
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Figure 1.2.2.3: Projections of ground truth embeddings and of Griffin-Lim 

synthesized speech embeddings generated from the same ground truth embeddings. 

Ground truth embeddings are drawn with circles and synthesized embeddings with 

crosses. 

 

1.2.3 Vocoder- 

The final stage of the pipeline is the vocoder, which converts the spectrograms 

generated by the synthesizer into an audio waveform. The authors of the SV2TTS 

framework employed WaveNet as the vocoder. This means that the entire Tacotron 2 

framework is effectively reapplied during the vocoder stage. 

When dealing with short utterances, the vocoder usually runs below real-time. The 

inference speed is highly dependent of the number of folds in batched sampling. 

Indeed, the network runs nearly in constant time with respect to the number of folds, 

with only a small increase in time as the number of folds grows. We find it is simpler 

to talk about a threshold duration of speech above which the model runs in real time. 

On our setup, this threshold is of 12.5 seconds; meaning that for utterances that are 

shorter than this threshold, the model will run slower than real-time. It seems that 

performance varies unexpectedly with some environment factors (such as the 

operating system) on PyTorch, and therefore we express our results with respect to a 

single same configuration. 
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The implementation on our hands does not have the custom GPU operation and 

implementing it is beyond our capabilities. Rather, we focus on the pruning aspect 

mentioned by the authors. They claim that a large sparse WaveRNN will perform 

better and faster than a smaller dense one. We have experimented with the pruning 

algorithm but did not complete the training of a pruned model, due to time limits. This 

is a milestone we hope to achieve at a later date. 

Sparse tensors are, at the time of writing, yet an experimental feature in PyTorch. 

Their implementation might not be as efficient as the one the authors used. Through 

experiments, we find that the matrix multiply operation addmm for a sparse matrix 

and a dense vector only breaks even time-wise with the dense-only addmm for levels 

of sparsity above 91%. Below this value, using sparse tensors will actually slow down 

the forward pass speed. The authors report sparsity levels of 96.4% and 97.8% 

(Kalchbrenner et al., 2018, Table 5) while maintaining decent performances. Our tests 

indicate that, at best, a sparsity level of 96.4% would lower the real-time threshold to 

7.86 seconds, and a level of 97.8% to 4.44 seconds. These are optimistic lower 

bounds on the actual threshold due to our assumption of constant time inference, and 

also because some layers in the model cannot be scarified. This preliminary analysis 

indicates that pruning the vocoder would be beneficial to inference speed. 

 

We did manage to get a prototype working by February, but this model is no longer 

compatible with changes we’ve made to the framework. We are determined to provide 

a working implementation before the defense of this thesis, but we cannot report of 

new experiments for now. Our impressions of the prototype was that our 

implementation was successful in creating a TTS model that could clone most voices, 

but not some uncommon ones . Some artifacts and background noise were present due 

to the poor quality of our synthesizer, which is why we had to revise the quality of our 

data and our preprocessing procedures. One drawback of the SV2TTS framework is 

the necessity to train models in sequential order. Once a new encoder is trained, the 

synthesizer must be retrained and so must the vocoder. Waiting for models to train so 

as to know on what to focus next has been a recurring situation in the development of 

our framework.  
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1.3 Motivation- 

The motivation behind voice replication is to enable the creation of artificial voices that can 

sound like specific individuals, while still preserving the semantic content of the speech. This 

can be useful for a variety of applications, such as creating personalized voice assistants or 

generating synthetic speech for people who have lost their ability to speak. By studying voice 

cloning, researchers can gain a deeper understanding of the parameters that influence speech 

signals and human pronunciation mechanisms. Additionally, the development of effective 

voice replication techniques can have practical applications in fields such as entertainment, 

education, and healthcare. 

 

1.4 Proposed Objectives- 

 
1. To generate a TTS framework that can generate natural-sounding speech for a variety 

of individuals using as little data as possible. 

2. To develop a zero-shot learning scenario where only a few minutes of transcribed 

speech from a target speaker are used to create new speech in that speaker's voice, with 

no modification to the model's variables. 

3. To combine a speaker encoder model with Tacotron2 and speaker verification training 

to create a multi-speaker system for voice cloning. 

4. To convert the voice into speaker embedding and the Encoder module would be able to 

assist us with this process. 

5. To extract the final output speech to address issues such as slowdown errors and noise 

in Tacotron2 models when dealing with out-of-set speakers. 

6. To create a methodology that can produce stable results with new target speaker data, 

while also ensuring precise pronunciation, fluent phrases, and minimal background 

noise. 
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2. LITERATURE SURVEY 

 

[1] Transfer learning from speaker verification to multispeaker text-

to-speech synthesis 

Ye Jia, Yu Zhang, Ron J. Weiss, et al., [1] The article defines A neural network that is 

artificial connections system built around multispeaker TTS as that is a combination 

makes use of the speaker's encoder system to generate superior speech for unknown 

its speakers. The platform requires minimal information to operate and doesn't 

demand superior clean conversation or transcripts. But the capacity of the system to 

achieve living thing-level genuineness and accent transfer is limited. Future work 

might focus on emulate adaptation along with conditioning the virtual instrument on 

separate from speaker and accent embeddings to overcome these limitations. 

 

[2] Research on Voice Cloning with a Few Samples 

Li Zhao, Feifan Chen, et al., [2] This article presents a new method for replicating of 

words founded on the a few samples that are faster and can be used on low-

performance devices. The method employs a three-module structure of encoder, 

synthesizer, and vocoder and can be quickly optimized and improved. However, 

Chinese speech cloning lags behind English speech cloning due to a lack of data and 

the complexity of Chinese prosody. Future research will concentrate on improving 

network structure and cloning efficiency. Overall, this paper adds to the literature on 

speech cloning and suggests promising directions for future research. 

 

 

[3] Cloning one’s voice using very limited data in the wild 

Dongyang Dai, Yuanzhe Chen, Li Chen, et al., [3] This paper proposes Hieratron, a voice 

cloning model framework composed of bottleneck2mel as well as text2bottleneck parts. Each 

of the modules Receive instruction on different types Of knowledge, allowing for speaking 

replicating with only a tiny amount of of poor quality seek speaker the information. Moreover 

the framework allows for greater control over the synthesized voice, including cross-language 

and cross-style voice cloning. Overall, the paper improves the total amount of understanding 

about voice cloning by proposing a new framework who addresses some of the shortcomings 

of previous approaches. 
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[4] Natural tts synthesis by conditioning wavenet on mel spectrogram 

predictions  

Jonathan Shen, Ruoming Pang, Ron J. Weiss, et al., [5] This paper describes Tacotron 

2, a fully neural TTS system that predicts Mel spectrograms using a series such as 

sequence connections attention-grabbing network and synthesises speech using a 

modified WaveNet vocoder. This system gets modern facilities sound reproduction 

that is comparable to human-like speech and is trained using existing data without 

having to make use of complex feature engineering methods. 

 

[5] Dian: Duration informed auto-regressive network for voice 

cloning 

Wei Song, Xin Yuan, et al., DIAN, an end-to-end TTS approach for voice cloning 

that uses a Transformerbased length model and acoustic modelling which requires no 

consideration, is described in this work. The provided time information is utilised for 

broadening the sensor's output cycle, removing missing along with recurring issues as 

well as the attention mechanism across both the decoder and encoder parts. The 

suggested systems are capable of synthesise expression in conjunction with 

satisfactory large understanding as well as quality, and reasonable speaker The 

parallel and style analogy, ranking third with regard to of pronunciation quality and 

fourth in relation to participant resemblance and along similarities Within the M2VoC 

Track 1 is a task. 

 

[6] A real-time speaker-dependent neural vocoder 

In this paper, the FFTNet is a novel deep learning method for synthesis of audio 

waveforms that outperforms WaveNet in terms of speed and naturalness of speech 

when used as a vocoder. WaveNet previously showed the ability to generate excellent 

audio directly from a convolutional neural network. According to a mean opinion 

score test, FFTNet outperforms WaveNet in terms of speed and produces more 

natural-sounding speech. 
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[7] Recent advances in Google real-time HMM-driven unit selection 

synthesizer 

This paper describes enhancements to Google's HMM-driven choosing units speech 

production system as well, with emphasis on decreasing latency and boosting 

pronunciation while handling massive data sets. The paper's authors introduce a 

number runtime system optimisations, involving a hybrid search approach and a new 

voice building strategy for effectively dealing with large databases while lowering 

build times. The improvements are critical for real-world large-scale applications that 

call for optimal performance along with minimal latency, and therefore. 

 

[8] Deep voice 2: Multi-speaker neural text-to-speech 

By applying negligible-dimensional attainable writer embeddings that this paper 

describes a procedure for providing multiple voices from only one neural TTS (text to 

speech) model. The authors indicate that Deep Speech 2 and an artificial neural 

vocoder for post-processing exceed cutting-edge TTS for a single speaker theories, 

Tacotron as well as Deep Sound 1. They also demonstrate that on one neural TTS 

structure can acquire several hundred unique voices from multi-speaker TTS 

information sets. with high sound synthesis and preserved speaker identities in a little 

over fifty minutes of data per speaker. 
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3. PROPOSED METHODOLOGY 

 

 3.1 Deep Learning: 

Deep learning is part of a broader family of machine learning methods, which is based 

on artificial neural networks with representation learning. Learning can 

be supervised, semi-supervised or unsupervised. Deep-learning architectures such 

as deep neural networks, deep belief networks, deep reinforcement learning, recurrent 

neural networks, convolutional neural networks and transformers have been applied to 

fields including computer vision, speech recognition, natural language 

processing, machine translation, bioinformatics, drug design, medical image 

analysis, climate science, material inspection and board game programs, where they 

have produced results comparable to and in some cases surpassing human expert 

performance.  

 

The adjective "deep" in deep learning refers to the use of multiple layers in the 

network. Early work showed that a linear perceptron cannot be a universal classifier, 

but that a network with a nonpolynomial activation function with one hidden layer of 

unbounded width can. Deep learning is a modern variation that is concerned with an 

unbounded number of layers of bounded size, which permits practical application and 

optimized implementation, while retaining theoretical universality under mild 

conditions. In deep learning the layers are also permitted to be heterogeneous and to 

deviate widely from biologically informed connectionist models, for the sake of 

efficiency, trainability and understandability. 

 

Deep learning is a method in artificial intelligence (AI) that teaches computers to 

process data in a way that is inspired by the human brain. Deep learning models can 

recognize complex patterns in pictures, text, sounds, and other data to produce 

accurate insights and predictions. You can use deep learning methods to automate 

tasks that typically require human intelligence, such as describing images or 

transcribing a sound file into text.  

 

Artificial intelligence (AI) attempts to train computers to think and learn as humans 

do. Deep learning technology drives many AI applications used in everyday products, 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Representation_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Semi-supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Deep_learning#Deep_neural_networks
https://en.wikipedia.org/wiki/Deep_belief_network
https://en.wikipedia.org/wiki/Deep_reinforcement_learning
https://en.wikipedia.org/wiki/Recurrent_neural_networks
https://en.wikipedia.org/wiki/Recurrent_neural_networks
https://en.wikipedia.org/wiki/Convolutional_neural_networks
https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Machine_translation
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Drug_design
https://en.wikipedia.org/wiki/Medical_image_analysis
https://en.wikipedia.org/wiki/Medical_image_analysis
https://en.wikipedia.org/wiki/Climatology
https://en.wikipedia.org/wiki/Board_game
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Connectionism
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such as the following: 

• Digital assistants 

• Voice-activated television remotes 

• Fraud detection 

• Automatic facial recognition 

It is also a critical component of emerging technologies such as self-driving cars, 

virtual reality, and more. Deep learning models are computer files that data scientists 

have trained to perform tasks using an algorithm or a predefined set of steps. 

Businesses use deep learning models to analyze data and make predictions in various 

applications. 

 
 

3.2 Python Programming Language: 

Python is a high-level, general-purpose programming language. Its design philosophy 

emphasizes code readability with the use of significant indentation via the off-side 

rule. Python is dynamically typed and garbage-collected. It supports multiple 

programming paradigms, including structured (particularly procedural), object 

oriented and functional programming. It is often described as a "batteries included" 

language due to its comprehensive standard library. Python is a multi-paradigm 

programming language. Object-oriented programming and structured programming 

are fully supported, and many of their features support functional programming and 

aspect-oriented programming (including metaprogramming and metaobjects). Many 

other paradigms are supported via extensions, including design by contract and logic 

programming. Python uses dynamic typing and a combination of reference counting 

and a cycle-detecting garbage collector for memory management. It uses dynamic 

name resolution (late binding), which binds method and variable names during 

program execution. Its design offers some support for functional programming in the 

Lisp tradition. It has filter, meandrous functions; list comprehensions, dictionaries, 

sets, and generator expressions. The standard library has two modules (itertools and 

functools) that implement functional tools borrowed from Haskell and Standard ML. 
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3.3 PyTorch: 

PyTorch is an open-source machine learning framework designed to accelerate the 

path from research prototyping to production deployment. PyTorch was created to 

provide flexibility and speed during the development and implementation of deep 

learning neural networks. Examples of deep learning software built on top of PyTorch 

include Tesla's Autopilot, Uber’s Pyro, Hugging Face’s Transformers, PyTorch 

Lightning, and Catalyst. PyTorch is an optimized tensor library for deep learning that 

uses GPUs and CPUs to greatly accelerate computation speed. It is a Python-based 

package that provides two high-level features: tensor computation (like NumPy) with 

strong GPU acceleration and deep neural networks built on a tape-based autograd 

system. PyTorch provides a wide variety of tensor routines to accelerate and fit 

scientific computation needs, such as slicing, indexing, mathematical operations, 

linear algebra, and reductions. PyTorch is an open-source machine learning 

framework designed to accelerate the path from research prototyping to production 

deployment. PyTorch was created to provide flexibility and speed during the 

development and implementation of deep learning neural networks. Examples of deep 

learning software built on top of PyTorch include Tesla's Autopilot, Uber’s Pyro, 

HuggingFace’s Transformers, PyTorch Lightning, and Catalyst. 
 

 

3.4 Statistical parametric speech synthesis: 

Statistical parametric speech synthesis (SPSS) refers to a group of data-driven TTS 

methods that emerged in the late 90s. In SPSS, the relationship between the features 

computed on the input text and the output acoustic features is learned by a statistical 

generative model (called the acoustic model). A complete SPSS framework thus also 

includes a pipeline to extract features from the text to synthesize, as well as a system 

able to reconstruct an audio waveform from the acoustic features produced by the 

acoustic model (such a system is called a vocoder). Unlike the acoustic model, these 

two parts of the framework may be entirely engineered and make use of no statistical 

methods. While modern deep TTS models are usually not referred to as SPSS, the 

SPSS pipeline as depicted in Figure 3.4.1 applies just as well to those newer methods. 
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                                  Figure 3.4.1: The general SPSS pipeline 

 

The role of the feature extractor is to provide data that is more indicative of what the 

speech produced by the model is expected to sound like. Speech is a complex process, 

and directly feeding characters to a weak acoustic model will prove not to be 

effective. Providing additional features from natural language processing (NLP) 

techniques may greatly reduce the extent of the task to be learned by the acoustic 

model. It may however result in trade-offs when it comes to naturalness, especially 

for rare or unknown words. Indeed, manually engineered heuristics do not quite fully 

characterize all intricacies of spoken language. For this reason, feature extraction can 

also be done with trained models. The line between the feature extractor and the 

acoustic model can then become blurry, especially for deep models. In fact, a 

tendency that is common across all areas where deep models have overtaken 

traditional machine learning techniques is for feature extraction to consist of less 

heuristics, as highly nonlinear models become able to operate at higher levels of 

abstraction. 

A common feature extraction technique is to build frames that will integrate 

surrounding context in a hierarchical fashion. For example, a frame at the syllable 

level could include the word that comprises it, its position in the word,  

The reason why the acoustic model does not directly predict an audio waveform is 

that audio happens to be difficult to model: it is a particularly dense domain and audio 

signals are typically highly nonlinear. A representation that brings out features in a 

more tractable manner is the time-frequency domain. Spectrograms are smoother and 

much less dense than their waveform counterpart. They also have the benefit of being 

two-dimensional, thus allowing models to better leverage spatial connectivity. 

Unfortunately, a spectrogram is a lossy representation of the waveform that discards 

the phase. There is no unique inverse transformation function, and deriving one that 

produces natural-sounding results is not trivial. When referring to speech, this 

generative function is called a vocoder. The choice of the vocoder is an important 

factor in determining the quality of the generated audio. 
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3.5 Evolution of the state of the art in text-to-speech: 

 

The state of the art in SPSS has for long remained a hidden Markov model (HMM) 

based framework. This approach, laid out in Figure 3.5.1, consists in clustering the 

linguistic features extracted from the input text with a decision tree, and to train a 

HMM per cluster. The HMMs are tasked to produce a distribution over spectrogram 

coefficients, their derivative, second derivative and a binary flag that indicates which 

parts of the generated audio should contain voice. With the maximum likelihood 

parameter generation algorithm (MLPG) , spectrogram coefficients are sampled from 

this distribution and eventually fed to the MLSA vocoder [4]. It is possible to modify 

the voice generated by conditioning the HMMs on a speaker or tuning the generated 

speech parameters with adaptation or interpolation techniques Note that, while this 

framework used to be state of the art for SPSS, it was still inferior in terms of the 

naturalness of the generated speech compared to the well-established concatenative 

approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         Figure 3.5.1: The general HMM-based TTS pipeline. 
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4. PROPOSED ALGORITHM 

 

4.1 Transfer Learning from Speaker Verification to Multispeaker 

Text-To-Speech Synthesis: 

 

Our approach to real-time voice cloning is largely based on SV2TTS throughout this 

document. It describes a framework for zero-shot voice cloning that only requires 5 

seconds of reference speech. This paper is only one of the many publications from the 

Tacotron series5 authored at Google. Interestingly, the SV2TTS paper does not bring 

much innovation of its own, rather it is based on three major earlier works from 

Google: the GE2E loss, Tacotron and WaveNet. The complete framework is a three-

stage pipeline, where the steps correspond to the models listed in order previously. 

Many of the current TTS tools and functionalities provided by Google, such as the 

Google assistant6 or the Google cloud services, make use of these same models [1]. 

While there are many open-source reimplementation of these models online, there is 

none of the SV2TTS framework to our knowledge. The three stages of the framework 

are as follows: 

• A speaker encoder that derives an embedding from the short utterance of a single 

speaker. The embedding is a meaningful representation of the voice of the speaker, 

such that similar voices are close in latent space.  

• A synthesizer that, conditioned on the embedding of a speaker, generates a 

spectrogram from text. This model is the popular Tacotron 2 without WaveNet 

(which is often referred to as just Tacotron due to its similarity to the first iteration).  

• A vocoder that infers an audio waveform from the spectrograms generated by the 

synthesizer. The authors used WaveNet as a vocoder, effectively reapplying the entire 

Tacotron 2 framework. 

At inference time, the speaker encoder is fed a short reference utterance of the speaker 

to clone. generates an embedding that is used to condition the synthesizer, and a text 

processed as a phoneme sequence is given as input to the synthesizer. The vocoder It 

takes the output of the synthesizer to generate the speech waveform. This is illustrated 

in Figure 1.2.2.1. 
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                 Figure 4.1.1: The SV2TTS framework during inference. 

 

All models in the SV2TTS framework can be trained on different datasets 

independently. It is critical to have a noise resistant encoder capable of capturing the 

many characteristics of human speech. As a result, an extensive corpus of multiple 

speaking would be ideal to instruct the encoder, despite the strict audio quality 

requirements. Furthermore, the digital encoder is trained with the GE2E loss, which 

requires only the speaker's name as labels. The model in GE2E learns from a speaker 

verification task that has nothing connected with conversation cloning purposes 

However, the task demands that the network create an embedding that represents the 

speaker's voice in an important manner [1]. 

 

As shown in Figure 4.1.1, the system is divided into three modules: encoder, 

synthesizer, and vocoder. In this research, the speaker's voice is first converted into 

the speaker's reference waveform, which then gets sent to the speaker encoder. In 

order to transform the speaker's voice into speaker embedding, i.e. text, we utilize a 

Speaker Encoder, which is trained using numerous distinct speakers. Also, the 

encoder has received GE2E loss training, and this is used for speaker validation tasks, 

as a part of working with the Speaker Encoder. The project specifies the method for 

incorporating results. At every step of the training process, the GE2E loss function 

updates the network in a way that emphasizes examples that are tricky to verify. A 

Phoneme is the smallest sound in a spoken word . Graphene is a written symbol (letter 

or letters) that represents a sound. So simply, the phoneme-grapheme connection is 

the relationship between sounds and letters. e.g. ‘x’ which is the speech sounds k/s 

together, and that is made up of k/w.For utilizing the ‘Text to Speech’ model here we 

use a Graphene or Phoneme sequence by which we are able to distinguish the 

speaker’s voice letters i.e. Graphene into small sound words i.e. Phoneme. After 

distinguishing the sound words, the Graphene or Phoneme sequence is passed on to 
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Encoder which converts voice into speaker embedding i.e text. After obtaining the 

embedding i.e., text, Synthesizer plays an important role which is used for converting 

the text into Mel-Spectrogram. The Tacotron 2 modular synthesizer is now optimized. 

In Tacotron 2, replace Wavenet with a changed network. To expand the span of a 

single encoder frame, every single letter in the spoken a series is first ingrained as a 

vector of values followed by overlaid. At the same time, enter the phoneme sequence, 

which will quickly combine and improve speaking.  

To produce the device output frames, these encoders frames are transmitted via in 

both directions LSTM.the LSTM algorithm is a code word for long short-term recall. 

It is a constant brain network (RNN) memory extension model or architecture. RNN 

is an artificial neural network that works on the current input through taking into 

account the previous output (feedback) and storing it in its memory to stay a short 

amount of time (short-term memory). The system's a combination aspect includes the 

embedding of a speaker waveform sequence and an a grapheme or phoneme 

sequence. To generate the decoder's input frame, the mind's mechanism now focuses 

on the encoder output each frame. The model is autoregressive model because each 

decoder participation frame is linked to the previous decoding device frame 

result.This cascading vector is projected onto an entire MEL spectrum frame once it 

traverses two one-way LSTM layer layers. When an additional projection prediction 

network of the same vectors into a scalar, it emits a value that is higher than the 

threshold, the frame generation is slowed down. Before becoming a MEL 

spectrogram, every single pair of frames undergoes transmission by way of an 

additional network technology. 

The Algorithm follows the steps as: 

1. For converting the speaker’s voice into speaker embedding i.e text we use a 

Speaker Encoder which is composed of many different speakers to train the 

encoder. 

2. Because of the Speaker Encoder, In addition, the encoder has received GE2E 

loss training which is used for speaker verification tasks. The task specifies the 

way of output embedding. 

3. GE2E loss function updates the network in a way that emphasizes examples 

that are difficult to verify at each step of the training process. 

4. A Phoneme is the smallest sound in a spoken word. Graphene is a written 

symbol (letter or letters) that represents a sound. So simply, the phoneme-
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grapheme connection is the relationship between sounds and letters. e.g. ‘x’ 

which is the speech sounds k/s together, and qu that is made up of k/w. 

5. For utilizing the ‘Text to Speech’ model here we use a Graphene or Phoneme 

sequence by which we are able to distinguish the speaker’s voice letters i.e. 

Graphene into small sound words i.e. Phoneme. 

6. After distinguishing the sound words, the Graphene or Phoneme sequence is 

passed on to Encoder which converts voice into speaker embedding i.e text.  

7. After obtaining the embedding i.e. text, Synthesizer plays an important role 

which is used for converting the text into Mel-Spectrogram.   

8. The synthesizer is based on optimized Tacotron 2. Replace Wavenet in 

Tacotron 2 with a modified network. Each character in the text sequence is 

first embedded as a vector and then convolved to increase the span of a single 

encoder frame.  

9. Meanwhile, input the corresponding phoneme sequence, which can quickly 

converge and improve pronunciation. These encoder frames are transmitted 

via bidirectional LSTM to produce encoder output frames. 

10. LSTM stands for long short-term memory. It is a model or architecture that 

extends the memory of recurrent neural networks (RNN). Talking about RNN, 

it is a network that works on the present input by taking into consideration the 

previous output (feedback) and storing in its memory for a short period of time 

(short-term memory). 

11. The concat part of the system add embedding of speaker waveform sequence 

and Grapheme or Phoneme Sequence. 

12. Now, The attention mechanism focuses on the encoder output frame to 

generate the decoder input frame.  

13. Each decoder input frame is connected to the previous decoder frame output, 

thus making the model autoregressive. 

14. This cascading vector passes through two one-way LSTM layers before being 

projected onto a single MEL spectrum frame.  

15. Another projection prediction network of the same vector into a scalar emits a 

value above a certain threshold to stop frame generation. 

16. The entire sequence of frames passes through a residual network before 

becoming a MEL spectrogram. 

17. The target MEL spectrogram of the synthesizer has more acoustic 
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characteristics than the speaker encoder. They are calculated in 12.5ms steps 

from a 50ms window and fed into 80-dimensional MFCC.  

18. MFCCs are a compact representation of the spectrum (When a waveform is 

represented by a summation of the possibly infinite number of sinusoids) of an 

audio signal.  

19. The Vocoder is used for mel-spectrogram into waveform. 

20. The vocoder is used for speech synthesis and speech is generated from it by 

using the LPCNET model improved by Wavernn. 

21. LPCNET was proposed as a way to reduce the complexity of neural synthesis 

by using linear prediction (LP) to assist an autoregressive model. 

22. After performing vocoder actions, it generates the waveform. 

23. For the conversion of text-to-speech, the method of J. Shen will be used which 

is mainly based on Tacotron 2 is a neural network architecture for speech 

synthesis directly from the text.  

In this way the algorithm follows the steps. 
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5. DESIGN AND IMPLEMENTATION 

 

5.1   Design: 

Consider a dataset of utterances grouped by their speaker. We denote the jth utterance 

of the ith speaker as uij. Utterances are in the waveform domain. We denote by xij the 

log-mel spectrogram of the utterance uij. A log-mel spectrogram is a deterministic, 

non-invertible (lossy) function that extracts speech features from a waveform, so as to 

handle speech in a more tractable fashion in machine learning. 

The encoder E computes the embedding eij = E(xij;wE) corresponding to the utterance 

uij, where wE are the parameters of the encoder. Additionally, the authors define a 

speaker embedding as the centroid of the embeddings of the speaker’s utterances: 

                               

The synthesizer S, parametrized by wS, is tasked to approximate xij given ci and tij, 

the transcript of utterance uij. We have xˆij = S(ci,tij;wS). In our implementation, we 

directly use the utterance embedding rather than the speaker embedding (we motivate 

this choice in section 3.4), giving instead xˆij = S(uij,tij;wS)[2]. 

Finally, the vocoder V, parametrized by wV, is tasked to approximate uij given xˆij. 

We have uˆij = V(xˆij;wV). 

One could train this framework in an end-to-end fashion with the following objective 

function [2]: 

                           

Where LV is a loss function in the waveform domain. This approach has drawbacks: 

• It requires training all three models on a same dataset, meaning that this 

dataset would ideally need to meet the requirements for all models: a large 

number of speakers for the encoder but at the same time, transcripts for the 

synthesizer. A low-level noise for the synthesizer and somehow an average 

noise level for the encoder (so as to be able to handle noisy input speech). 

These conflicts are problematic and would lead to training models that could 

perform better if trained separately on distinct datasets. Specifically, a small 

dataset will likely lead to poor generalization and thus poor zero-shot 

performance. 

• The convergence of the combined model could be very hard to reach. In 
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particular, the Tacotron synthesizer could take a significant time before 

producing correct alignments. 

An evident way of addressing the second issue is to separate the training of the 

synthesizer and of the vocoder. Assuming a pretrained encoder, the synthesizer can be 

trained to directly predict the mel spectrograms of the target audio: 

 

 

Remains the optimization of the speaker encoder. Unlike the synthesizer and the 

vocoder, the encoder does not have labels to be trained on. The task is lousily defined 

as producing “meaningful” embeddings that characterize the voice in the utterance. 

One could conceive of a way to train the speaker encoder as an autoencoder, but it 

would require the corresponding up sampling model to be made aware of the text to 

predict. Either the dataset is constrained to a same sentence, either one needs 

transcripts and the up-sampling model is the synthesizer. In both cases the quality of 

the training is impaired by the dataset and unlikely to generalize well. Fortunately, the 

GE2E loss brings a solution to this problem and allows to train the speaker encoder 

independently of the synthesizer.  

 

 

   

 

 

 

 

 

 

 

                     Figure 5.1.1: The sequential three-stage training of SV2TTS 

 

While all parts of the framework are trained separately, there is still the requirement 

for the synthesizer to have embeddings from a trained encoder and for the vocoder to 

have mel spectrograms from a trained synthesizer (if not training on ground truth 

spectrogram). Figure 1.2.1.2 illustrates how each model depends on the previous one 
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for training. The speaker encoder needs to generalize well enough to produce 

meaningful embeddings on the dataset of the synthesizer; and even when trained on a 

common dataset, it still has to be able to operate in a zero-shot setting at inference 

time. 

 

5.2  Speaker encoder: 

The encoder model and its training procedure are described over several 

papers,we reproduced this model with a PyTorch implementation of our own. We 

synthesize the parts that are pertinent to SV2TTS as well as our choices of 

implementation. 

 

5.2.1 Model architecture: 

The model is a 3-layer LSTM with 768 hidden nodes followed by a projection 

layer of 256 units. While there is no reference in any of the papers as to what a 

projection layer is, our intuition is that it is simply a 256 outputs fully-connected 

layer per LSTM that is repeatedly applied to every output of the LSTM. When 

we first implemented the speaker encoder, we directly used 256 units LSTM 

layers instead, for the sake of quick prototyping, simplicity and for a lighter 

training load. This last part is important, as the authors have trained their own 

model for 50 million steps (although on a larger dataset), which is technically 

difficult for us to reproduce. We found this smaller model to perform extremely 

well, and we haven’t found the time to train the larger version later on [2]. 

The inputs to the model are 40-channels log-mel spectrograms with a 25ms 

window width and a 10ms step. The output is the L2-normalized hidden state of 

the last layer, which is a vector of 256 elements. Our implementation also 

features a ReLU layer before the normalization, with the goal in mind to make 

embeddings sparse and thus more easily interpretable. 

 

 

5.2.2 Generalized End-to-End loss: 

The speaker encoder is trained on a speaker verification task. Speaker verification is a 

typical application of biometrics where the identity of a person is verified through 

their voice. A template is created for a person by deriving their speaker embedding 
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(see equation 1) from a few utterances. This process is called enrollment. At runtime, 

a user identifies himself with a short utterance and the system compares the 

embedding of that utterance with the enrolled speaker embeddings. Above a given 

similarity threshold, the user is identified. The GE2E loss simulates this process to 

optimize the model. 

At training time, the model computes the embeddings eij (1 ≤ i ≤ N,1 ≤ j ≤ M) of M 

utterances of fixed duration from N speakers. A speaker embedding ci is derived for each 

speaker: . The similarity matrix Sij,k is the result of the two-by-two 

comparison of all embeddings eij against every speaker embedding ck (1 ≤ k ≤ N) in the 

batch[2]. This measure is the scaled cosine similarity: 

                                    Sij,k = w ·  cos(eij,ck) + b = w ·  eij ·  ||ck||2 + b 

where w and b are learnable parameters. This entire process is illustrated in Figure 

5.3.1.1. From a computing perspective, the cosine similarity of two L2-normed 

vectors is simply their dot product, hence the rightmost hand side of equation 2. An 

optimal model is expected to output high similarity values when an utterance matches 

the speaker (i = k) and lower values elsewhere (i 6= k). To optimize in this direction, 

the loss is the sum of row-wise SoftMax losses [2]. 

 

                    Figure 5.2.2.1: The construction of the similarity matrix at training time 

 

Note that each utterance eij is included in the centroid ci of the same speaker when 

computing the loss. This creates a bias towards the correct speaker independently of 

the accuracy of the model; and the authors argue that it also leaves room for trivial 

solutions. To prevent this, an utterance that is compared against its own speaker’s 

embedding will be removed from the speaker embedding. The similarity matrix is 

then defined as: 

( 

if i = k 

Sji,k = w · cos(eij,ck) + b otherwise. Where the exclusive centroids c(
i
−j) are 
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defined as: 

M 

 c  

 
The fixed duration of the utterances in a training batch is of 1.6 seconds. These are 

partial utterances sampled from the longer complete utterances in the dataset. While 

the model architecture is able to handle inputs of variable length, it is reasonable to 

expect that it performs best with utterances of the same duration as those seen in 

training. Therefore, at inference time an utterance is split in segments of 1.6 seconds 

overlapping by 50%, and the encoder forwards each segment individually. The 

resulting outputs are averaged then normalized to produce the utterance embedding 

[2]. This is illustrated in figure 5.2.2.2. Curiously, the authors of SV2TTS advocate 

for 800ms windows at inference time but still 1.6 seconds ones during training. We 

prefer to keep 1.6 seconds for both, as is done in GE2E. 

 

 

 

 

 

 

 

           Figure 5.2.2.2: Computing the embedding of a complete utterance 

As for the number of speakers, it's important to consider the time complexity of 

computing the similarity matrix, which is O(N2M). Therefore, the number of speakers 

should not be excessively large to avoid significantly slowing down the training 

process, as opposed to simply selecting the largest batch size that fits on the GPU. 

However, it is still possible to parallelize multiple batches on the same GPU while 

synchronizing operations across batches for efficiency. It was found to be crucial to 

vectorize all operations when computing the similarity matrix in order to minimize the 

number of GPU transactions. 
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5.2.3 Implementation: 

• Applies the preprocessing operations used in training the Speaker Encoder to a 

waveform either on disk or in memory. The waveform will be resampled to 

match the data hyperparameters. 
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• At inference time, the speaker encoder is fed a short reference utterance of the 

speaker to clone. It generates an embedding that is used to condition the 

synthesizer, and a text processed as a phoneme sequence is given as input to 

the synthesizer. 
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• Computes where to split an utterance waveform and its corresponding mel 

spectrogram to obtain partial utterances of <partial_utterance_n_frames> each. 

Both the waveform and the mel spectrogram slices are returned, so as to make 

each partial utterance waveform correspond to its spectrogram 
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• Creating a model for speaker encoder which Computes the embeddings of a 

batch of utterance spectrograms. 
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• Preprocess the Dataset and apply on model for training. 
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• Train the speaker encoder model on the preprocess dataset. 
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5.3  Synthesizer: 

The synthesizer is Tacotron 2 without Wavenet. We use an open-source Tensorflow 

implementation4 of Tacotron 2 from which we strip Wavenet and implement the 

modifications added by SV2TTS. 

 

5.3.1 Model Architecture: 

We briefly present the top-level architecture of the modified Tacotron 2 without 

Wavenet. For further details, we invite the reader to take a look at the Tacotron 

papers. 

Tacotron is a recurrent sequence-to-sequence model that predicts a mel spectrogram 

from text. It features an encoder-decoder structure (not to be mistaken with the 

speaker encoder of SV2TTS) that is bridged by a location-sensitive attention 

mechanism. Individual characters from the text sequence are first embedded as 

vectors. Convolutional layers follow, so as to increase the span of a single encoder 

frame. These frames are passed through a bidirectional LSTM to produce the encoder 

output frames. This is where SV2TTS brings a modification to the architecture: a 

speaker embedding is concatenated to every frame that is output by the Tacotron 

encoder. The attention mechanism attends to the encoder output frames to generate 

the decoder input frames. Each decoder input frame is concatenated with the previous 

decoder frame output passed through a pre-net, making the model autoregressive. 

This concatenated vector goes through two unidirectional LSTM layers before being 

projected to a single mel spectrogram frame. Another projection of the same vector to 

a scalar allows the network to predict on its own that it should stop generating frames 

by emitting a value above a certain threshold. The entire sequence of frames is passed 

through a residual post-net before it becomes the mel spectrogram [4]. This 

architecture is represented in Figure 5.3.1.1. 
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                       Figure 5.3.1.1: The modified Tacotron architecture 

The target mel spectrograms for the synthesizer contain additional features compared 

to those used for the speaker encoder. They are generated using a 50ms window and a 

12.5ms step, resulting in spectrograms with 80 channels. In our implementation, the 

input texts are not modified for pronunciation, and the characters are processed as 

they are [4]. However, there are a few cleaning procedures applied, such as replacing 

abbreviations and numbers with their complete textual forms, converting all 

characters to ASCII, normalizing whitespaces, and converting all characters to 

lowercase. Although punctuation could be utilized, it is not present in our datasets. 

 

5.3.2 Implementation: 

• This code implementation of audio processing functions for tasks like 

spectrogram generation, waveform manipulation, and audio representation 

conversion. It includes features such as loading/saving audio, preemphasis, 

spectrogram computation, inverse spectrogram conversion, and utility 

functions for STFT, padding, scale conversion, and normalization. These 

functions are useful for speech and audio applications like synthesis, 

conversion, and analysis. 
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• The model isn't instantiated and loaded in memory until needed or until load() 

is called. Instantiates and loads the model given the weights file that was 

passed in the constructor and Synthesizes mel spectrograms from texts and 

speaker embeddings 
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• Preprocess the Dataset and apply on model for training. 
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• Train the synthesizer model on the preprocess dataset. 
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5.4   Vocoder: 

In SV2TTS and in Tacotron2, WaveNet is the vocoder. WaveNet has been at 

the heart of deep learning with audio since its release and remains state of the 

art when it comes to voice naturalness in TTS. It is however also known for 

being the slowest practical deep learning architecture at inference time. 

Several later papers brought improvements on that aspect to bring the 

generation near real-time or faster than real-time, with no or next to no hit to 

the quality of the generated speech. Nonetheless, WaveNet remains the 

vocoder in SV2TTS as speed is not the main concern and because Google’s 

own WaveNet implementation with various improvements already generates 

at 8000 samples per second. This is in contrast with WaveNet which generates 

at 172 steps per second at best. At the time of the writing of this thesis, most 

open-source implementations of WaveNet are still vanilla implementations. 

We propose a simple scheme for describing the inference speed of 

autoregressive models. Given a target vector u with |u| samples to predict, the 

total time of inference T(u) can be decomposed as: 

 

T(u) = |u|
X

(c(opi) + d(opi)) 

i=1 

where N is the number of matrix-vector products (∝ the number of layers) 

required to produce one sample, c(opi) is the computation time of layer i and 

d(opi) is the overhead of the computation (typically I/O operations) for layer i. 

Note that standard sampling rates for speech include 16kHz, 22.05kHz and 

24kHz (while music is usually sampled at 44.1kHz), meaning that for just 5 

seconds of audio |u| is close to 100,000 samples. The standard WaveNet 

architecture accounts for three stacks of 10 residual blocks of two layers each, 

leading to N = 60 [2]. 

WaveRNN, the model proposed, improves on WaveNet by not only reducing 

the contribution from N but also from u, c(opi) and d(opi). The vocoder model 

we use is an open source PyTorch implementation5 that is based on 

WaveRNN but presents quite a few different design choices made. We’ll refer 

to this architecture as the “alternative WaveRNN”. 
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5.4.1 Model Architecture: 

In WaveRNN, the entire 60 convolutions from WaveNet are replaced by a 

single GRU layer. The authors maintain that the high non-linearity of a GRU 

layer alone is close enough to encompass the complexity of the entire 

WaveNet model. Indeed, they report a MOS of 4.51 ± 0.08 for Wavenet and 

4.48 ± 0.07 for their best WaveRNN model. The inputs to the model are the 

GTA mel spectrogram generated by the synthesizer, with the ground truth 

audio as target. At training time, the model predicts fixed-size waveform 

segments. The forward pass of WaveRNN is implemented with only N = 5 

matrix-vector products in a coarse-fine scheme where the lower 8 bits (coarse) 

of the target 16 bits sample are predicted first and then used to condition the 

prediction of the higher 8 bits (fine). The prediction is over the parameters of a 

distribution from which the output is sampled [2].  

Finally, we improve on |u| with batched sampling. In batched sampling, the 

utterance is divided in segments of fixed length and the generation is done in 

parallel over all segments. To preserve some context between the end of a 

segment and the beginning of the subsequent one, a small section of the end of 

a segment is repeated at the beginning of the next one. This process is called 

folding. The model then forwards the folded segments. To retrieve the 

unfolded tensor, the overlapping sections of consecutive segments are merged 

by a cross-fade. This is illustrated in Figure 5.4.1.1. We use batched sampling 

with the alternative WaveRNN, with a segment length of 8000 samples and an 

overlap length of 400 samples. With these parameters, a folded batch of size 2 

will yield a bit more than 1 second of audio for 16kHz speech. 

 

 

 

 

 

 

 

Figure 5.4.1.1: Batched sampling of a tensor. Note how the overlap is repeated 

over each next segment in the folded tensor. 
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The alternative WaveRNN is the architecture we use. There is no 

documentation nor paper for this model, so we rely on the source code and on 

the diagram of the author (Figure 5.4.1.2) to understand its inner workings. At 

each training step, a mel spectrogram and its corresponding waveform are cut 

in the same number of segments. The inputs to the model are the spectrogram 

segment t to predict and the waveform segment t − 1. The model is expected to 

output the waveform segment t of identical length. The mel spectrogram goes 

through an up sampling network to match the length of the target waveform 

(the number of mel channels remains the same). A Resnet-like model also uses 

the spectrogram as input to generate features that will condition the layers 

throughout the transformation of the mel spectrogram to a waveform. The 

resulting vector is repeated to match the length of the waveform segment. This 

conditioning vector is then split equally four ways along the channel 

dimension, and the first part is concatenated with the upsampled spectrogram 

and with the waveform segment of the previous timestep. The resulting vector 

goes through several transformation with skip connections: first two GRU 

layers then a dense layer. Between each step, the conditioning vector is 

concatenated with the intermediate waveform. Finally, two dense layers 

produce a distribution over discrete values that correspond to a 9-bit encoding 

of mu-law companded audio [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 5.4.1.2: The alternative WaveRNN architecture. 

 



Dept. of CSE, SSGMCE, Shegaon, Session 2022-23 
48 

Replication of Voice Using Deep Learning 

  

 
 

5.4.2 Implementation: 

• The Vocoder provides functions for audio sample conversion, loading/saving 

audio files, signal splitting/combining, 16-bit encoding, linear-to-mel 

spectrogram conversion,  
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• Infers the waveform of a mel spectrogram output by the synthesizer (the 

format must match that of the synthesizer. 
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• Trainining the Vocoder model on the preprocess vocoder dataset. 
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5.5   Replication Toolbox: 

To facilitate easy access and usage of the framework without the need for 

prior study, we have developed a graphical interface known as the "SV2TTS 

toolbox." This interface, depicted in Figure 5.5.1, is designed using Python 

and the Qt4 graphical interface, ensuring cross-platform compatibility. Users 

can swiftly navigate the toolbox and utilize the framework's functionalities 

without extensive preparation. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5.1: The SV2TTS toolbox interface. This image is best viewed on a 

digital support. 

 

At the start, the user chooses an audio file containing an utterance from any 

dataset stored on their computer. The SV2TTS toolbox is equipped to handle 

various widely used speech datasets, and it can also be personalized to 

incorporate new ones. Additionally, users have the option to record their own 

utterances, enabling them to clone their unique voices. 

After loading an utterance, the toolbox proceeds to calculate its embedding 

and automatically updates the UMAP projections. While the mel spectrogram 

of the utterance is displayed (middle row on the right), it serves as a visual 

reference and does not contribute to any computations. The embedding vector 

is illustrated using a heatmap plot located on the left of the spectrogram. It's 

important to note that embeddings are unidimensional vectors, and the square 

shape in the visualization does not convey any structural information about the 
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embedding values. The purpose of drawing embeddings is to provide visual 

indicators of the differences between two embeddings. 

Once an embedding is computed, it can be utilized to generate a spectrogram. 

The user has the ability to input any desired text (located at the top right of the 

interface) for synthesis. It is important to note that our model does not support 

punctuation and will ignore it. To control the prosody of the synthesized 

utterance, the user needs to insert line breaks between the sections that should 

be synthesized individually. The resulting spectrogram is a concatenation of 

these parts and is displayed at the bottom right of the interface. Generating the 

spectrogram multiple times using the same sentences will yield different 

outputs. Additionally, the user can employ the vocoder to generate the 

segment corresponding to the synthesized spectrogram. A loading bar 

indicates the progress of the generation, and upon completion, the embedding 

of the synthesized utterance is generated and displayed on the left side of the 

synthesized spectrogram. This synthesized embedding can also be projected 

using UMAP. Users have the freedom to consider this embedding as a 

reference for further generation or experimentation. 
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5.5.1 Implementation- 

• Create the User interface for using the toolbox. 
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• Running the toolbox in system. 
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• Displayed the User Interface. 
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6. CONCLUSION 

 

In conclusion, this study presents a neural network-based system for 

multispeaker Text-to-Speech (TTS) production. The system leverages a 

dynamically trained writer encoder network, a sequence-to-sequence TTS 

synthesis network, and a Tacotron 2-based artificial neural vocoder. It 

demonstrates the ability to generate high-quality speech for both seen and 

unseen speakers, achieving speech quality comparable to natural discourse 

about the target speakers. 

Transfer learning plays a crucial role in the system, reducing the need for 

extensive multispeaker TTS data for training. The approach eliminates the 

requirement for writer identification labels in synthesizer training data and 

transcripts or high-quality linguistic annotations in speech encoder training 

data, making the system more flexible and practical. 

However, limitations are identified, including the use of a low-dimensional 

vector for modeling speaker variations, which restricts the system's capacity to 

fully utilize extensive symbolic speech. Improving speaker similarity when 

comparing more than a few reference moments requires an adaptation method, 

and the system lacks the capability to modify accents. 

Furthermore, despite the utilization of a WaveNet vocoder, the proposed 

approach falls short of achieving human-level naturalness. This is attributed to 

the challenge of creating speech with limited details per speaker and the 

utilization of datasets with poor data quality. The system also struggles to fully 

distinguish the speaker's voice from the prosody present in the text. 

In summary, this neural network-based system shows promise for 

multispeaker TTS production, with the ability to generate high-quality speech 

for both known and unknown speakers. Further improvements are needed to 

address limitations related to speaker individuality, naturalness, accent 

modification, and the distinction between the speaker's voice and prosody. 

These findings provide a foundation for future advancements in multispeaker 

TTS technology. 
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7. FUTURE SCOPE 

Deep learning-based voice replication has undergone tremendous progress in 

the past few years, but there is still plenty of room for future advancements. 

Here are some potential future uses of deep learning over voice replication: 

• Enhanced Realism: Developing dissimilar voices in voice replication 

is a crucial objective, and although significant progress has been made, 

there is still scope for improvement. Future advancements in deep 

learning can focus on enhancing the realism of replicated voices, 

aiming for even greater convincing power. 

• Personalized Voices: Personalized conversation replication is a 

different one fascinating field for studies. Algorithms for deep learning 

can be trained to replicate someone's voice versus making generic 

humanoid voices. This might be useful for voice-activated personal 

computers or even in keeping someone's speaking voice after passing 

away. 

• Multilingual Voices: Current voice replication systems are often 

limited to a single language, but the future could see the development 

of multilingual systems. These systems could replicate voices in 

multiple languages, making them useful for international 

communication and language learning applications. 

• Expressive Voices: Future deep learning algorithms can enable the 

replication of emotions and expressions in voices, enhancing their 

versatility for applications like chatbots, virtual assistants, and 

entertainment. 

• Limited Data Training: Deep learning-based conversation replication 

has the potential to revolutionize human-machine communication by 

creating highly sophisticated voice replication systems that mimic the 

intricacies of human speech. 

                 The future of deep learning-based conversation replication holds 

immense potential to transform human-machine communication and 

interpersonal interactions. Advancements in this field are likely to result in 

more sophisticated and adaptable voice replication systems, bringing us closer 

to replicating the full range of human speech nuances and subtleties.
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